If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-60x-15=0
a = 36; b = -60; c = -15;
Δ = b2-4ac
Δ = -602-4·36·(-15)
Δ = 5760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5760}=\sqrt{576*10}=\sqrt{576}*\sqrt{10}=24\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-24\sqrt{10}}{2*36}=\frac{60-24\sqrt{10}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+24\sqrt{10}}{2*36}=\frac{60+24\sqrt{10}}{72} $
| 12a+10=6a-1 | | F(x)=2^x-7 | | 10^x=27 | | 36r^2+60r-15=0 | | x2+4x-38=-6 | | x=6x^2-12x-7 | | 1-1y=26 | | 49/100=x/30 | | 16/100=x/30 | | (6r+5)^2-35=0 | | 0.75x=3x^2÷4x^ | | -3.65-4.8k=-5.3k-5.3 | | 0.75x=3x^2÷4x^2 | | 5t–20–5t=3 | | –3.65−4.8k=–5.3k−5.3 | | 10-5s=-2-9s | | t3+t2−350=270 | | 5v2+17v+5=6v | | 2d-5=-d+7 | | x2−27x+22=0 | | 3t-2=t-10 | | 10-(-3y-8)=4y-(2-9y) | | 1/4r+12=18-3/4r | | 40+5x=20+8x | | 2(x+5)-7=4x | | 450+28.75p=967.50 | | B=15h=12.2 | | -13x-13x+20=-11x-11x+38 | | 3*(x+3)^1/2-(x-2)^1/2=7 | | x=20+15/7 | | -2A=18a | | 12x*2/3=0 |